行业资讯 | 知识资讯 | 集团快讯
基因(二)
——摘转自《百度百科》
(上接基因一)
四、认识过程
从孟德尔定律的发现,一百多年来人们对基因的认识在不断深化。
基因的分离定律
1866年,奥地利学者G.J.孟德尔在他的豌豆杂交实验论文中,用大写字母A、B等代表显性性状如圆粒、子叶黄色等,用小写字母a、b等代表隐性性状如皱粒、子叶绿色等。他并没有严格地区分所观察到的性状和控制这些性状的遗传因子。但是从他用这些符号所表示的杂交结果来看,这些符号正是在形式上代表着基因,而且至今在遗传学的分析中为了方便起见仍沿用它们来代表基因。
20世纪初孟德尔的工作被重新发现以后,他的定律又在许多动植物中得到验证。1909年丹麦学者W.L.约翰森提出了基因这一名词,用它来指任何一种生物中控制任何性状而其遗传规律又符合于孟德尔定律的遗传因子,并且提出基因型和表现型这样两个术语,前者是一个生物的基因成分,后者是这些基因所表现的性状。
1910年美国遗传学家兼胚胎学家T.H.摩尔根在果蝇中发现白色复眼(whiteeye,W)突变型,首先说明基因可以发生突变,而且由此可以知道野生型基因W+具有使果蝇的复眼发育成为红色这一生理功能。1911年摩尔根又在果蝇的X连锁基因白眼和短翅两品系的杂交子二代中,发现了白眼、短翅果蝇和正常的红眼长翅果蝇,首先指出位于同一染色体上的两个基因可以通过染色体交换而分处在两个同源染色体上。交换是一个普遍存在的遗传现象,不过直到20世纪40年代中期为止,还从来没有发现过交换发生在一个基因内部的现象。因此当时认为一个基因是一个功能单位,也是一个突变单位和一个交换单位。
20世纪40年代以前,对于基因的化学本质并不了解。直到1944年O.T.埃弗里等证实肺炎双球菌的转化因子是DNA,才首次用实验证明了基因是有遗传效应的DNA片段。
1955年S.本泽用大肠杆菌T4噬菌体作材料,研究快速溶菌突变型rⅡ的基因精细结构,发现在一个基因内部的许多位点上可以发生突变,并且可以在这些位点之间发生交换,从而说明一个基因是一个功能单位,但并不是一个突变单位和交换单位,因为一个基因可以包括许多突变单位(突变子)和许多重组单位(重组子)(见互补作用)。
1969年J.夏皮罗等从大肠杆菌中分离到乳糖操纵子,并且使它在离体条件下进行转录,证实了一个基因可以离开染色体而独立地发挥作用,于是颗粒性的遗传概念更加确立。随着重组DNA技术和核酸的顺序分析技术的发展,对基因的认识又有了新的发展,主要是发现了重叠的基因、断裂的基因和可以移动位置的基因。
五、重叠基因
重叠基因是在1977年发现的。早在1913年A.H.斯特蒂文特已在果蝇中证明了基因在染色体上作线状排列,20世纪50年代对基因精细结构和顺反位置效应等研究的结果也说明基因在染色体上是一个接着一个排列而并不重叠。但是1977年F.桑格在测定噬菌体ΦX174的DNA的全部核苷酸序列时,却意外地发现基因D中包含着基因E。基因E的第一个密码子(见遗传密码)从基因D的中央的一个密码子TAT的中间开始,因此两个部分重叠的基因所编码的两个蛋白质非但大小不等,而且氨基酸也不相同。在某些真核生物病毒中也发现有重叠基因。
断裂的基因也是在1977年发现的,它是内部包含一段或几段最后不出现在成熟的mRNA中的片段的基因。这些不出现在成熟的mRNA中的片段称为内含子,出现在成熟的mRNA中的片段则称为外显子。例如下面这一基因,有三个外显子和两个内含子。在几种哺乳动物的核基因、酵母菌的线粒体基因以及某些感染真核生物的病毒中都发现了断裂的基因。内含子的功用以及转录后的加工机制是真核生物分子遗传学的一个吸引人的课题。
功能、类别和数目到目前为止在果蝇中已经发现的基因不下于1000个,在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。
1945年G.W.比德尔通过对脉孢菌的研究,提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在20世纪50年代得到充分的验证。
六、类别区分
20世纪60年代初F.雅各布和J.莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:
①编码蛋白质的基因。
②没有翻译产物的基因。
③不转录的DNA区段。
一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。
数目不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。
等位基因:位于一对同源染色体的相同位置上控制某一性状的不同形态的基因。不同的等位基因产生例如发色或血型等遗传特征的变化。等位基因控制相对性状的显隐性关系及遗传效应,可将等位基因区分为不同的类别。在个体中,等位基因的某个形式(显性的)可以比其他形式(隐性的)表达得多。等位基因(gene)是同一基因的另外“版本”。例如,控制卷舌运动的基因不止一个“版本”,这就解释了为什么一些人能够卷舌,而一些人却不能。有缺陷的基因版本与某些疾病有关,如囊性纤维化。值得注意的是,每个染色体(chromosome)都有一对“复制本”,一个来自父亲,一个来自母亲。这样,我们的大约3万个基因中的每一个都有两个“复制本”。这两个复制本可能相同(相同等位基因allele),也可能不同。图一显示的是一对染色体,上面的基因用不同颜色表示。在细胞分裂过程中,染色体的外观就是如此。如果比较两个染色体(男性与女性)上的相同部位的基因带,你会看到一些基因带是相同的,说明这两个等位基因是相同的;但有些基因带却不同,说明这两个“版本”(即等位基因)不同。
拟等位基因(pseudoalleles):表型效应相似,功能密切相关,在染色体上的位置又紧密连锁的基因。它们象是等位基因,而实际不是等位基因。
传统的基因概念由于拟等位基因现象的发现而更趋复杂。摩根学派在其早期的发现中特别使他们感到奇怪的是相邻的基因一般似乎在功能上彼此无关,各行其是。影响眼睛颜色、翅脉形成、刚毛形成、体免等等的基因都可能彼此相邻而处。具有非常相似效应的“基因”一般都仅仅不过是单个基因的等位基因。如果基因是交换单位,那就绝不会发生等位基因之间的重组现象。事实上摩根的学生在早期(1913;1916)试图在白眼基因座位发现等位基因的交换之所以都告失败,后来才知道主要是由于试验样品少。然而自从斯特体范特(1925)提出棒眼基因重复的不均等交换学说以及布里奇斯(1936)根据唾液腺染色体所提供的证据支持这学说之尼,试图再一次在仿佛是等位基因之间进行重组的时机已经成熟。Oliver(1940)首先取得成功,在普通果蝇的菱形基因座位上发现了等位基因不均等交换的证据。两个不同等位基因(Izg/Izp)被标志基因拼合在一起的杂合子以0.2%左右的频率回复到野生型。标志基因的重组证明发生了“等位基因”之间的交换。
非常靠近的基因之间的交换只能在极其大量的试验样品中才能观察到,由于它们的正常行为好像是等位基因,因此称为拟等位基因(Lewis,967)。它们不仅在功能上和真正的等位基因很相似,而且在转位(transposition)后能产生突变体表现型。它们不仅存在于果蝇中,而且在玉米中也已发现,特别在某些微生物中发现的频率相当高。分子遗传学对这个问题曾有很多解释,然而由于对真核生物的基因调节还知之不多,所以还无法充分了解。
位置效应的发现产生了深刻影响。杜布赞斯基在一篇评论性文章中曾对此作出下面的结论:“一个染色体不单是基因的机械性聚合体,而且是更高结构层次的单位……染色体的性质由作为其结构单位的基因的性质来决定;然而染色体是一个合谐的系统,它不仅反映了生物的历史,它本身也是这历史的一个决定因素”(Dobzhaansky,1936:382)。
有些人并不满足于这种对基因的“串珠概念”的温和修正。自从孟德尔主义兴起之初就有一些生物学家(例如Riddle和Chiid)援引了看来是足够份量的证据反对基因的颗粒学说。位置效应正好对他们有利。Goldschmidt(1938;1955)这时变成了他们的最雄辩的代言人。他提出一个“现代的基因学说”(1955:186)来代替(基因的)颗粒学说。按照他的这一新学说并没有定位的基因而只有“在染色体的一定片段上的一定分子模式,这模式的任何变化(最广义的位置效应)就改变了染色体组成部分的作用从而表现为突变体。”染色体作为一个整体是一个分子“场”,习惯上所谓的基因是这个场的分立的或甚至是重叠的区域;突变是染色体场的重新组合。这种场论和遗传学的大量事实相矛盾因而未被承认,但是像Goldschmidt这样一位经验丰富的知名遗传学家竟然如此严肃地提出这个理论这件事实就表明基因学说还是多么不巩固。从20世纪30年代到20世纪50年代所发表的许多理论性文章也反映了这一点(Demerec,1938,1955;Muller,1945;Stadler,1954)。
复等位基因:基因如果存在多种等位基因的形式,这种现象就称为复等位基因(multipleallelism)。任何一个二倍体个体只存在复等位基中的二个不同的等位基因。
在完全显性中,显性基因中纯合子和杂合子的表型相同。在不完显性中杂合子的表型是显性和隐性两种纯合子的中间状态。这是由于杂合子中的一个基因无功能,而另一个基因存在剂量效应所致。完全显性中杂合体的表型是兼有显隐两种纯合子的表型。此是由于杂合子中一对等位基因都得到表达所致。
比如决定人类ABO血型系统四种血型的基因IA、IB、i,每个人只能有这三个等位基因中的任意两个。